Heavy mineral sands exploitation and exposure to ionizing radiation in Mozambique

F. Conceição^a, F. Catuane^a, S. Taímo^a,

F.P. Carvalho^b, J. M. Oliveira^b, M. Malta^b

^a Ministério dos Recursos Minerais e Energia, Direcção Nacional de Geologia e Minas, Praça 25 de Junho Caixa Postal 217, Maputo, Moçambique

^b Laboratório de Protecção e Segurança Radiológica, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139, 2695-066 Bobadela LRS, Portugal

Introduction

- Coastal deposits of heavy mineral sands on the shore of Indian Ocean are targeted by extraction industries intensively producing zircon, rutile, garnet, and rare-earth elements.
- Two important coastal areas, at Moma and Angoche, with heavy mineral sand deposits and extractive industries, were investigated for the presence of naturally-occurring radioactive elements and monitored for radiation doses.

Coastal areas

Left: hydraulic separation plant of heavy minerals from coastal sand dunes at Angoche;

Right: arrival of heavy minerals' wet concentrate at the magnetic separation plant, at Moma coastal area.

Results

Sample description	Site	²³⁸ U	²²⁶ Ra	U total (g kg ⁻¹)	Th (g kg ⁻¹)
Sand dune-rich layer	Angoche #1	428 ± 16	324 ± 49	0.035 ± 0.001	0.25 ± 0.04
Rejected sand waste	Angoche #2	29 ± 2	24 ± 2	0.0024±0.0001	0.0057± 0.0005
Sand dune-top layer	Angoche #5	40 ± 1	28 ± 2	0.0032±0.0001	0.030 ± 0.002
Wet mineral concentrate	Angoche #6	727 ± 22	936 ± 110	0.059±0.002	0.80 ± 0.08
Magnetic Ilmenite	Angoche #7	86 ± 3	212 ± 17	0.0070±0.0002	0.111 ±0.006
Non-magnetic fraction	Angoche #8	2729 ± 83	415 ± 42	0.221 ± 0.007	0.39 ± 0.02
Sand dune-top layer	Moma #1	9.3 ± 0.9	7.5 ± 0.6	(7.6 ±0.8)x10 ⁻⁴	0.0048±0.0003
Wet mineral concentrate	Moma #2	605 ± 22	353 ± 34	0.049±0.002	0.34 ± 0.03
Magnetic fraction	Moma #5	179 ± 5	147 ± 13	0.0145±0.0004	0.21 ± 0.02
Non-magnetic fraction	Moma #4	1560 ± 48	1076 ± 254	0.126±0.004	1.0.2
Standard zircon	Moma #11	1057 ± 30	800 ± 152	0.086 ± 0.002	0.054 ± 0.001

External irradiation

 In the facilities for magnetic separation of minerals, radiation doses were at around 1-3 μSv/h by workplaces and up to 8 μSv/h by the piles of non-magnetic mineral fractions.

Conclusions

- There is an association of thorium and uranium minerals with the heavy mineral fractions (zirconium and rare earth elements).
- At some workplaces, the external radiation doses may reach and exceed annual radiation dose limits adopted internationally.
- Application of the radiation protection basic safety standards is needed in these industries.